Minggu, 07 Desember 2014

Tugas Kelompok
489451.jpg

MATEMATIKA WAJIB


©    Fijriani Juli Kartika.P.
©    Iffah Nurfaidah
©    Jessy Okta Yulia Sari
©    Kenni Resdianningsih
©    Rahma Nurhaliza

X MIA 5


SMA AL-AZHAR 3 BANDAR LAMPUNG





Kata Pengantar

Assalamu’alaikum warahmatullahi wabarakatuh. Alhamdulillahirabbilalamin, banyak nikmat yang Allah berikan, tetapi sedikit sekali yang kita ingat. Segala puji hanya layak untuk Allah Tuhan seru sekalian alam atas segala berkat, rahmat, taufik, serta hidayah-Nya yang tiada terkira besarnya, sehingga penulis dapat menyelesaikan makalah dengan judul ”BARISAN DAN DERET”. Dalam penyusunannya, kami memperoleh banyak bantuan dari berbagai pihak, karena itu kami mengucapkan terima kasih yang sebesar-besarnya yang telah memberikan dukungan, kasih, dan kepercayaan yang begitu besar.Dan juga terima kasih kepada Ibu Siska yang telah memberikan kami tugas ini. Dari sanalah semua kesuksesan ini berawal, semoga semua ini bisa memberikan sedikit kebahagiaan dan menuntun pada langkah yang lebih baik lagi. Meskipun kelompok kami berharap isi dari makalah ini bebas dari kekurangan dan kesalahan, namun selalu ada yang kurang. Oleh karena itu, kelompok kami mengharapkan kritik dan saran yang membangun agar skripsi ini dapat lebih baik lagi. Akhir kata dari kami berharap agar makalah ini bermanfaat bagi semua pembaca.






















Daftar Isi


Kata Pengantar ...................................................................................................... 2
Daftar Isi ................................................................................................................ 3
Notasi Sigma ..........................................................................................................4
Contoh soal Notasi Sigma .....................................................................................5
Barisan dan Deret Aritmatika ...............................................................................7
Sisipan dan Dret Aritmatik ...................................................................................10
Barisan dan Deret Geometri ................................................................................11
Daftar Pustaka ......................................................................................................14





































Notasi Sigma

NOTASI SIGMA
Notasi Sigma merupakan notasi yang digunakan untuk menyatakan penjumlahan bilangan. Perhatikan contoh berikut
Screenshot_3
Untuk notasi:
Screenshot_1
dimana :
1 adalah batas bawah
n adalah batas atas
ui adalah suku
dalam hal ini huruf yang dipakai tidak selalu i dapat juga menggunakan huruf lain.
Sifat – Sifat Notasi Sigma
Berikut ini beberapa sifat dari notasi sigma yang dapat dijadikan panduan dalam mengerjakan soal-soal mengenai notasi sigma :
Screenshot_2
                                                                          

Contoh Soal Notasi Sigma
Screenshot_3
Beberapa rumus untuk notasi sigma
Rumus berikut ini dapat membantu dalam menyelesaikan berbagai variasi soal notasi sigma.
Screenshot_4
contoh 1 :
Screenshot_5
contoh 2 :
Screenshot_6
Screenshot_7
contoh 3 :
Dengan menggunakan sifat notasi sigma, buktikan bahwa :
Screenshot_8

Barisan Dan Deret Aritmatika
Barisan Aritmatika dan Deret Aritmatika
Pengertian Barisan Matematika
Yang dinamakan barisan dari bilangan real adalah susunan bilangan yang mempunyai sifat keturunan (berpola), unsur-unsur suatu barisan disebut dengan istilah suku-suku barisan, dilambangkan dengan  U1, U2, U3, …, Un.
U1 = suku pertama
U2 = suku kedua
U3 = suku ketiga
Un = suku ke-n
Contoh barisan bilangan ganjil
1, 3, 5, 7, 9, …., 2n-1
suku pertaman (U1) = 1, suku kedua (U2) = 3, dan suku ke-n = 2n-1
Dalam matematika SMA, jenis barisan ada 2 yaitu barisan aritmatika dan barisan geometri, kali ini kita akan belajar barisan aritmatika dulu, yang geometri insyaAlloh menyusul.
Barisan Aritmatika
Definisi barisan ini adalah barisan yang setiap selisih antar suku yang berdekatan selalu konstan. Secara matematis dalam barisan aritmatika berlaku rumus
Un-Un-1 = konstan, dengan n = 2,3,4,...
 Nilai konstan pada definisi di atas disebut juga dengan beda barisan aritmatika (dilambangkan b)
Un-Un-1 = b
Contoh
23, 30, 37, 44, 51, … merupakan barisan aritmatika dengan beda 7
2, 7/4, 3/2, 5/4, 1, … adalah barisan aritmatika dengan beda -1/4
Jika a adalah suku pertama dari deret matika dan b adalah beda, maka rumus barisan aritmatika adalah
Un = a  + (n-1)b [rumus barisan aritmatika]
Contoh soal
Suatu barisan aritmetika, suku ketiganya adalah 36, jumlah suku ke-5 dan ke-7 adalah 144. Berapa suku ke seratus dari barisan tersebut.
Jawab :
U3 = 36 
a + (3-1)  b = 36 a + 2b = 36 ……. (1)
U5 + U7
a + 4b + a + 6 b = 144 2a + 10 b = 144  a + 5b =72 …… (2)
eliminasi persamaan (1) dengan persamaan (2)
a + 2b = 36
a + 5b = 72
————– –
-3b = – 36 
b = 12
a + 2b = 36
a + 2(12) = 36
a + 24 = 36 a = 12
suku ke 100, U100 = a +  (100-1) b = 12 + 99.12 = 100. 12 =1200
Suku Tengah Barisan Aritmatika
Jika suatu barisan aritmatika berjumlah ganjil, maka di antara barisan tersebut ada suku tengahnya. Lalu bagaimana cara menentukan nilai dari suku tengah tersebut?
Rumus mencari nilai suku tengah
Ut = 1/2 (U1+Un)
contoh soal
Jika ada barisan aritmetika 2, 4, 6, 8, 10, 12, 14, …, 1.200 Tentukan suku tengahnya!
Ut = 1/2 (U1+Un) = 1/2 (2+1200) = 1/2 x 1.202 = 601
Sisipan dalam Barisan Aritmatika
Jika ada dua buah bilagnan m dan n, kemudian sobat sisipkan diantara dua bilangan tersebut bilangan sebanyak k buah, maka akan diperoleh bentuk
m, m+b, m+2b, m+3b, m+4b, …, n
misal kita punya 2 bilangan 10 dan 20 kemudian akan kita sisipkan 4 buah bilangan di antaranya hingga membentuk deret aritmatika. Dari semula 2 suku sekarang ditambah 4 suku, total ada 6 suku.
10, 10+b, 10+2b, 10+3b, 10+4b, 20 pertanyaanya berapa nilai beda (b)?
Sobat bisa menggunakan rumus Un = a+(n-1)b 
20 = 10+(6-1)b 20 = 10 + 5b b = 2
untuk rumus cepat sobat bisa menggunakan
b = [n-m]/[k+1]
Deret Aritmatika
Misalkan sobat punya suatu barisam aritmatikan U1, U2, U3, …. Un
maka jika sobat hitung melakukan penjumlahan suku secara berurutan dari suku pertama hingga suku ke-n, U1 + U2 + U3 + …. + Un itulah yang sdisebut dengan derat aritmatika. Sebut saja deret adalah jumlah dari suatu barisan aritmatika. Sn = jumlah n buah suku pertama dari suatu barisan aritmatika adalah
Sn = 1/2 n (2a+(n-1)b)
karena a+(n-1)b = Un
Sn = 1/2 n (a+a+(n-1)b)  = 1/2 n (a+Un)
Contoh soal
Misal saya punya sejumlah kelereng. Kelereng tersebut akan saya bagikan habis ke 5 orang dari sobat hitung menurut suatu aturan barisan aritmatika. Jika orang ketiga dapat 15 kelerang dan orang ke-4 dapat 19 kelerang. Berapa jumlah kelereng yang saya punya?
Pembahasan
Jumlah kelereng = deret artimatika dengan n = 5 (S5). Pertama kita cari nilai a dan b.
U3 = 15 a+2b = 15 …. (i)
U4 = 15
a+3b = 19 …. (ii)
……………………………………………. – (eliminasi)
– b = -4  
b = 4
a+2b = 15
a+8 = 15
a = 7
S= 1/2 5 (2(7)+(5-1)4) = 5/2 (30) = 75 buah kelereng.




















SISIPAN DAN DERET ARITMATIKA


Sisipan pada deret aritmatika yaitu menambahkan beberapa buah bilangan diantara dua suku yang berurutan pada suatu deret aritmatika sehingga diperoleh deret aritmatika yang baru. Sebagai contoh :
Deret mula-mula = 4 + 13 + 22 + 31 +……
Setelah disisipi = 4 + 7 + 10 + 13 + 16 + 19 + 22 + 25 + 28 + 31 +……
Untuk beda dari deret baru ini biasanya dinyatakan dengan b1, dapat ditentukan dengan rumus berikut :
b1 = b/(k+1)
b1 = beda deret baru
b = beda deret mula-mula
k = banyak bilangan yang disisipkan



























Barisan dan Deret Geometri

Barisan dan Deret Geometri – Ketika sobat belajar matematika SMA, ada dua macam barisan dan deret yaitu aritmatika dan geometri. Buat sobat yang ingin belajar lebih jauh tentang barisan dan deret aritmatika silahkan baca postingan barisan dan deret aritmatika. Kali ini rumushitung.com ingin mengajak sobat untuk belajar dan mengenal lebih jauh tentang barisan dan deret geometri.
Apa itu Barisan Geometri?
Barisan geometri atau sering diistilahkan “barisan ukur” adalah barisan yang memenuhi sifat hasil bagi sebuah suku dengan suku sebelumnya yang berurutan adalah bernilai konstan. Misal barisan geometri tersebut adalah a,b, dan c maka c/b = b/a = konstan. Hasil bagi suku yang berdekatan tersebut disebut dengan rasio barisan geometri (r).
Misalkan sobat punya sebuah deret geometri
U1, U2, U3, …, Un-1, Un
Maka
U2/U1 = U3/U2=U4/U3 = … Un/Un-1 = r (konstan)
lalu bagaimana menetukan suku ke-n dari sebuah barisan geometri? coba ambil contoh
U3/U2 = r maka U3 = U2. r = a.r.r = ar2
U4/U3 = r maka U4 = U3. r = a.r2.r = ar3 sejalan dengan
Un/Un-1 = r maka Un = Un-1. r = arn-2.r = arn-2+1 = arn-1
jadi dari penjelasan di atas sobat bisa menyimpulkan
Rumus Suku ke-n dari barisan geometri dirumuskan
Un = arn-1
dengan a = suku awal dan r = rasio barisan geomteri
contoh soal
Tentukan suku ke 10 dari barisan 1/8, 1/4, 1/2, ….
jawab :
kalau ditanya suku ke lima atau suku yang masih ke-sekian yang masih kecil mungkin sobat bisa meneruskan barisan geometri tersebut tapi kalau ditanyakan suku ke-10, ke-50, atau ke-100 akan sangat merepotkan dan mau tidak mau harus pakai rumus di atas. :D
r = 1/4 : 1/8 = 1/4 x 8 = 2 –> rasio
a = 1/8
Un = arn-1 = 1/8 2(10-1) = 1/8 . 29 = 2-3.29 = 26 = 64
contoh soal berikutnya
Sebuah amoeba dapat membelah diri menjadi 2 setiap 6 menit. Pertanyaannya, berapakah jumlah amoeba setelah satu jam jika pada awalnya terdapat 2 amoeba?
a = 2
r = 2
n = 1 jam/ 6 menit = 10
Un = arn-1
U10 = 2.210-1 = 210 = 1024 buah amoeba.
Apa itu Deret Geometri?
Deret geometri didefinisikan sebagai jumlah n buah suku pertama dari barisan geometri. Nilai dari n suku pertama dari sebuah barisan geometri dapat ditentukan dengan
  Sn = a + ar + ar2 + ar3 +… + arn-2 + arn-1
r Sn = ar + ar2 + ar3 +… + arn-2 + arn-1 + arn    (keduanya kita kurangkan)
———————————————————————————
Sn – rSn = a – arn
Sn (1-r) = a (1-rn)
Sn = a  (1-rn)/ (1-r)
dengan a = suku pertama dan r = rasio barisan geometri
Contoh Soal
tentukan jumlah 6 suku pertama dari barisan 1,3,9,…
Jawab
a = 1
r = 3 dan n = 6
Sn = a  (1-rn)/ (1-r) = 1 (1-36) / (1-3) = 1 (1-729) / -2 = -728/-2 = 364
Sisipan pada Barisan Geometri
dalam barisan geometri dikenal adanya sisipan. Misalkan di antara p dan q sobat sisipkan k buah bilangan  dan terdjadi barisan geometri, maka rasio barisan geometri adalah
CodeCogsEqn(8)
Suku Tengah Barisan Geometri
jika U1, U2, U3, … Un merupakan barisan geometri dengan n ganjil maka suku tengah barisan geometri tersebut adalah
rumus suku tengah deret geometri
Deret Geometri tak Hingga
Ketika sobat menjatuhkan bola bekel dari ketinggian satu meter dan bola tersebut akan memantul ke atas sejauh 0,8 tinggi jatuh sebelumnya berpa jarak yang ditempuh bola bekel tersebut hingga berhenti? heheh susah ya. Itu adalah contoh dari deret geomerti tak hingga yaitu deret yang banyak suku-sukunya tak terhingga. Jumlah suku-suku dari deret tak hingga  ada kemungkinan hingga tau tak hingga. Jika deret itu hingga maka deretnya disebut deret konvergen dan jika tak hingga disebut dere divergen. Gampangnya jika jumlah deret tak hingga menuju ke suatu harga tertentu yang berhingga maka disebut konvergen (mengerucut). Sebaliknya, deret geometri yang menuju bilangan tak hinggaa disebut divergen.
Deret tak hingga yang rasionya r ≥ 1 atau r ≤ 1 disebut deret divergen dan yang mempuyai rasio -1< r < 1 disebut deret konvergen. Untuk menghitung deret tak hingga ada dua rumus tergantung pada nilai r
nama deret
rasio (r)
rumus
divergen
r ≥ 1 atau r ≤ 1
s = ∞
konvergen
-1< r < 1
s = a/ 1-r
Contoh Soal
Tentukan jumlah suku-suku deret geometri tak hingga dari 1 + 0,5 + 0,25 + 0,125 + ….
Jawab
a = 1
r = 0,5
S∞ = a/1-r = 1/1-0,5 = 1/0,5 = 2
























Daftar Pustaka

         




















SEMOGA BERMANFAAT SOBAAT :) :)

Tidak ada komentar:

Posting Komentar